Example 4: Higgs production at NLO
Higgs discovery

Prominent peaks in the $\gamma\gamma$ and $ZZ^* \rightarrow 4l$ modes
What we know so far

- Gross properties of the new state roughly indicate SM-like couplings

- Biggest signals in $\gamma\gamma$ and ZZ, which proceed primarily via $gg\rightarrow h$
We showed this plot before indicating that the corrections are large. Our goal now is to compute the NLO cross section for this process and understand why.

Dawson; Djouadi, Graudenz, Spira, Zerwas 1991, 1995
Trouble at NLO

We showed this plot before indicating that the corrections are large. Our goal now is to compute the NLO cross section for this process and understand why.

Without a detailed understanding of QCD, we would have a factor of 3 excess in the $\gamma\gamma$ channel... and even more theoretical frenzy about beyond the SM physics.
Gluon fusion at LO

- Can calculate the LO cross section ⇒ already 1-loop!

\[
\sigma_{gg\to h}^{LO} = \frac{G_F Q_s^2}{288 \pi \sqrt{2}} \left| \sum_Q F_{1/2}(\tau_Q) \right|^2 \delta(1 - z), \quad \tau_Q = \frac{M_H^2}{4m_Q^2}, \quad z = \frac{M_H^2}{\hat{s}}
\]

\[
\tau \to 0 \quad \Rightarrow \quad F_{1/2} \to \frac{4}{3}
\]

\[
\tau \to \infty \quad \Rightarrow \quad F_{1/2} \to -\frac{2m_Q^2}{M_H^2} \ln \frac{M_H^2}{m_Q^2}
\]

- Independent of \(m_f \) when \(m_f \to \infty \) ⇒ true for any heavy fermion that gets its mass entirely from Higgs
Low-energy theorems

Useful, illuminating alternative approach for $2m_t > M_H$

Diagrammatically, clear that Higgs interaction comes from derivatives of the top part of the gluon self-energy:

\[
\mathcal{M}(hgg) \underset{p_H \to 0}{\simeq} \frac{m_t}{v} \frac{\partial}{\partial m_t} \mathcal{M}(gg)
\]

Generates both diagrams in the $M_H \to 0$ limit
Effective field theory

- We’re going to use an effective field theory to calculate the Higgs production cross section.
- EFT: if we are doing experiments at low energies, we shouldn’t care about the dynamics of very heavy particles. We should be able to approximate their effects as local, higher-dimension (suppressed by the heavy-particle masses) operators in an effective Lagrangian.
- Well-established in QCD: heavy-quark EFT, soft-collinear EFT
- We will use the separation $2m_t >> M_H$ to form a Higgs EFT

Useful references on EFT:
Manohar and Wise, *Heavy Quark Effective Theory*
Rothstein, hep-ph/0308266
The Higgs effective Lagrangian

Integrate out the top quark to produce an effective Lagrangian

\[\mathcal{L}_{full} = -\frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a + \mathcal{L}_{top} \]

\[G^a_{\mu} = \sqrt{\zeta_3} G^a_{\mu} \]

EFT field \hspace{1cm} decoupling constant \hspace{1cm} QCD field

\[\mathcal{L}_{EFT} = -\frac{\zeta_3}{4} G^a_{\mu\nu} G^{\mu\nu}_a \] (remember to amputate external legs)

Matching calculation: equate full and EFT propagators

\[-\frac{ig_{\mu\nu}}{p^2} \zeta_3 = -\frac{ig_{\mu\nu}}{p^2} \left[1 + \Pi_t(0) \right] \]

\[\Rightarrow \zeta_3 = 1 + \Pi_t(0) \]

\[\Rightarrow \mathcal{L}_{EFT} = -\frac{1}{4} \left[1 + \Pi_t(0) \right] G^a_{\mu\nu} G^{\mu\nu}_a \] (top-quark contribution to gluon self-energy)
The Higgs effective Lagrangian

Now apply the low energy theorem to derive HGG operator:

\[
\mathcal{L}_{EFT}^{hgg} = - \frac{m_t}{4v} \left(\frac{\partial}{\partial m_t} \Pi_t(0) \right) h G_{\mu\nu}^{a'} G_{a}^{\mu\nu'}
\]

\[
\Rightarrow \Pi_t(0) = \frac{\alpha_s}{6\pi} \left[\frac{\bar{\mu}^2}{m_t^2} \right]^\varepsilon \frac{\Gamma(1 + \varepsilon)}{\varepsilon}
\]

\[
\Rightarrow \mathcal{L}_{EFT}^{hgg} = \frac{\alpha_s h}{12\pi} v G_{\mu\nu}^{a'} G_{a}^{\mu\nu'}
\]

Numerous nice features of this formulation...
The Higgs effective Lagrangian

- Systematically, simply extendable to higher orders in QCD

 Useful references: Kniehl, Spira hep-ph/9505225; Steinhauser hep-ph/0201075

- Reduces calculations by one loop order; 1-loop becomes tree, etc.; makes a NNLO calculation possible

- Turns a two-scale problem into two one-scale problems

Two scales: $M_{\text{Higgs}}, m_{\text{top}}$

\[
\left(\frac{M_{\text{Higgs}}^2}{4m_{\text{top}}^2} \right) \left[\text{Only } M_{\text{Higgs}} + \text{Only } m_{\text{top}} + \ldots \right]
\]

\[\text{O}(M_{\text{Higgs}}^2/4m_{\text{top}}^2)\]
The Higgs effective Lagrangian

- Factorizes QCD effects (dynamics of gluons, light quarks from L_{EFT}) from new physics (heavy particles into Wilson coefficients)
- Applicable to the $h\gamma\gamma$ coupling also
- Can be used when a particle does not obtain all its mass from the Higgs
- Valid much beyond the expected region of validity; forms the basis for much of Tevatron/LHC phenomenology
- Let’s try it out, and do a full NLO calculation of a hadron collider cross section
Setup

Our Feynman rules are 5-flavor QCD plus the EFT vertices:

\[
\begin{align*}
&= -i \frac{\alpha_s}{3\pi v} \left\{ 1 + \frac{11}{4} \frac{\alpha_s}{\pi} \right\} \delta^{ab} [p_1 \cdot p_2 g^{\mu\nu} - p_1^\nu p_2^\mu] \\
&= g_s \frac{\alpha_s}{3\pi v} f^{abc} \{ g_{\mu\nu} (p_1 - p_2)_\rho \\
&\quad + g_{\nu\rho} (p_2 - p_3)_\mu + (p_3 - p_1)_\nu \}
\end{align*}
\]
Steps

- Pick a regularization scheme (dimensional regularization for us)
- Get the tree-level result
- Calculate 1-loop diagrams as a Laurent series in ε
- Perform the ultraviolet renormalization
- Calculate the real emission diagrams, extract singularities that appear in soft/collinear regions of phase space
- Absorb initial-state collinear singularities into PDFs
- Get numbers
Tree-level

\[\sigma_{h_1 h_2 \rightarrow h} = \int dx_1 \, dx_2 \, f_g(x_1) \, f_g(x_2) \, \hat{\sigma}(z) \]
+ smaller partonic channels

\[(z = M_H^2 / x_1 x_2 s) \]

Calculate the spin-, color-averaged matrix element squared

\[\left| \tilde{M} \right|^2 = \frac{1}{256(1 - \epsilon)^2} \times \left| M \right|^2 = \frac{\hat{s}^2}{576 v^2 (1 - \epsilon)} \left(\frac{\alpha_s}{\pi} \right)^2 \]

Get the phase space and flux factor

\[\frac{1}{2\hat{s}} \int \frac{d^d p_h}{(2\pi)^d} \, 2\pi \delta(p_H^2 - M_H^2) \, (2\pi)^d \delta^{(d)}(p_1 + p_2 - p_H) = \frac{\pi}{\hat{s}^2} \delta(1 - z) \]
\[\sigma_{h_1 h_2 \to h} = \int d x_1 \, d x_2 \, f_g(x_1) f_g(x_2) \hat{\sigma}(z) + \text{smaller partonic channels} \]

\[(z = M_H^2/x_1x_2s) \]

Combine to get the LO result:

\[\hat{\sigma}_0(z) = \sigma_0 \delta(1 - z) = \frac{\pi}{576v^2} \left(\frac{\alpha_s}{\pi} \right)^2 \delta(1 - z) \]

We will later need the full d-dimensional tree-level result:

\[\sigma_0^{(d)} = \frac{\sigma_0}{1 - \epsilon} \]
Virtual corrections

Calculate $2 \times \text{Re}[(M_0)^* M_1]$, which appears in the cross section

\[
\sigma_0^{(d)} \frac{\alpha_s}{\pi} \Gamma(1 + \epsilon) \left(\frac{\hat{s}}{\mu^2} \right)^{-\epsilon} \left\{ -\frac{13}{4\epsilon} - \frac{11}{3} \right\} \delta(1 - z)
\]

Leading soft+collinear singularity; emitting gluons from gluons gives color factor $C_A = 3$

External leg corrections scaleless:

\[
\int d^d k (k^2)^n = 0
\]
UV renormalization

LO dependence on α_S gives the UV counterterm:

$$\sigma_0^{(d)} \frac{\alpha_s}{\pi} \frac{1}{\epsilon} \left\{ -\frac{11}{2} + \frac{N_F}{3} \right\}$$

The remaining singularities are of soft/collinear origin; summing what we have so far yields

$$\sigma_0^{(d)} \frac{\alpha_s}{\pi} \left\{ -\frac{3}{\epsilon^2} + \frac{3}{\epsilon} \ln \frac{\hat{s}}{\mu^2} - \frac{1}{\epsilon} \left(\frac{11}{2} - \frac{N_F}{3} \right) + \text{finite} \right\} \delta(1 - z)$$

The pole structure can be checked to be correct: Catani, hep-ph/9802439
Real radiation corrections

Get the corrections coming from emission of an additional gluon

\[|\tilde{M}|^2 = 24 \alpha_s \sigma_0 \left\{ \frac{(1 - 2\epsilon) M_H^8 + \hat{s}^4 + \hat{t}^4 + \hat{u}^4}{\hat{s}\hat{t}\hat{u}} \right\} \frac{\epsilon}{2(1 - \epsilon)^2} \left(M_H^4 + \hat{s}^2 + \hat{t}^2 + \hat{u}^2 \right)^2 \]

• This can vanish when either \(p_g \to 0 \) (soft), or \(p_g \parallel p_1, p_g \parallel p_2 \) (collinear)
• Need a parameterization of phase space to extract these singularities appropriately

\[\hat{s} = (p_1 + p_2)^2 \]
\[\hat{t} = (p_1 - p_g)^2 \]
\[\hat{u} = (p_2 - p_g)^2 \]
Real radiation corrections

\[
\frac{1}{2\hat{s}} \int \frac{d^d p_g}{(2\pi)^d} \int \frac{d^d p_H}{(2\pi)^d} (2\pi) \delta(p_g^2)(2\pi) \delta(p_H^2 - M_H^2)(2\pi)^d \delta(d)(p_1 + p_2 - p_g - p_H)
\]

Introduce the following parameterization of \(p_g \):

\[
p_g = \frac{\hat{s}(1 - z)}{2} \left(1, 2\sqrt{\lambda(1 - \lambda)}, 0, 1 - 2\lambda \right)
\]

Obtain:

\[
\frac{1}{16\pi\hat{s}} \left(\frac{s}{4\pi} \right)^{-\epsilon} \frac{1}{\Gamma(1 - \epsilon)} (1 - z)^{1-2\epsilon} \int_0^1 d\lambda [\lambda(1 - \lambda)]^{-\epsilon}
\]

When we combine matrix elements and phase space, get terms of the following form:

\[
(1 - z)^{-1-2\epsilon} \left[\lambda(1 - \lambda) \right]^{-1-\epsilon}
\]

\(\lambda \to \mathbf{o}, \mathbf{r} \): collinear

\(z \to \mathbf{r} \): soft
Real radiation corrections

The integrals over λ can be done in terms of Gamma functions, while the soft singularities as $z \to 1$ can be extracted using plus distributions:

$$(1 - z)^{-1-2\epsilon} = -\frac{1}{2\epsilon} \delta(1 - z) + \left[\frac{1}{1 - z} \right]_+ - 2\epsilon \left[\frac{\ln(1 - z)}{1 - z} \right]_+ + O(\epsilon^2)$$

$$\int_0^1 dz \ f(z) \left[\frac{g(z)}{1 - z} \right]_+ = \int_0^1 dz \ g(z) \left[f(z) - f(1) \right]$$

Arrive at the following contribution to the cross section:

$$\sigma_0^{(d)} \frac{\alpha_s}{\pi} \Gamma(1 + \epsilon) \left(\frac{\hat{s}}{\mu^2} \right)^{-\epsilon} \left\{ \begin{array}{c}
3 \frac{\alpha_s}{\epsilon^2} \delta(1 - z) - 6 \left[\frac{1}{1 - z} \right]_+ + \frac{6z(z^2 - z + 2)}{\epsilon} \\
- \frac{3\pi^2}{2} \delta(1 - z) + 12 \left[\frac{\ln(1 - z)}{1 - z} \right]_+ - 12z(z^2 - z + 2)\ln(1 - z) - \frac{11}{2} (1 - z)^3 \end{array} \right\}$$
Absorb remaining initial-state collinear singularities into PDFs, which amounts to adding the following counterterm:

One for each PDF

\[
2 \times \frac{\alpha_s}{2\pi} \frac{1}{\epsilon} P_{gg} \otimes \hat{\sigma}_0(z)
\]

Arrive at the contribution:

\[
\sigma_0^{(d)} \frac{\alpha_s}{\pi} \frac{1}{\epsilon} \left\{ \left(\frac{11}{2} - \frac{N_F}{3} \right) \delta(1 - z) + \frac{6}{[1-z]^+} - 6z(z^2 - z + 2) \right\}
\]

This cancels all remaining poles, but we need to add on the NLO correction to the Wilson coefficient in the EFT:

\[
\sigma_0^{(d)} \frac{\alpha_s}{\pi} \frac{11}{2} \delta(1 - z)
\]
Final result

Arrive at the final NLO result for the inclusive cross section:

\[
\Delta \sigma = \frac{\alpha_s}{\pi} \sigma_0 \left\{ \left(\frac{11}{2} + \pi^2 \right) \delta(1-z) + 12 \left[\frac{\ln(1-z)}{1-z} \right]_+ - 12z(-z + z^2 + 2) \ln(1-z) \right\} (M^2/s \leq z \leq 1) \\
- \frac{11}{2} (1-z)^3 + 6 \ln \left(\frac{\hat{s}}{\mu^2} \right) \left[\frac{1}{[1-z]_+} - z(z^2 - z + 2) \right] \}
\]

First source of large correction: $11/2 + \pi^2 \Rightarrow 50\%$ increase

Second source: shape of PDFs enhances threshold logarithm

\[
\sigma_{had} = \tau \int_\tau^1 dz \frac{\sigma(z)}{z} \mathcal{L} \left(\frac{\tau}{z} \right)
\]

\[
\mathcal{L}(y) = \int_y^1 dx \frac{y}{x} f_1(x) f_2(y/x) \text{ (partonic luminosity)}
\]

Assume $f_i \sim (1-x)^b$; plot L for various b

Look for peak near $z=1$

\Rightarrow Sharp fall-off of gluon PDF enhances correction

\[b-2\text{ (valence)}\]
\[b-10\text{ (gluon)}\]
NNLO in the EFT

- Use of the EFT allows the NNLO cross section to be obtained.

Again, scale variation, especially at LO, can badly underestimate error!

Harlander, Kilgore ‘02; Anastasiou, Melnikov ‘02; Ravindran, Smith van Neerven ‘03
Unreasonably effective EFT

NLO in the EFT:

\[\Delta \sigma = \sigma_0 \frac{\alpha_s}{\pi} \left\{ \left(\frac{11}{2} + \pi^2 \right) \delta(1 - z) + 12 \left[\frac{\ln(1 - z)}{1 - z} \right] \right\} - 12z(-z + z^2 + 2)\ln(1 - z) \]

\[-6 \frac{(z^2 + 1 - z)^2}{1 - z} \ln(z) - \frac{11}{2} (1 - z)^3 \}

Identical factors in full theory with \(\sigma_0 \rightarrow \sigma_{\text{LO}}, \) full theory

\[\sigma_{\text{approx}}^{\text{NLO}} = \left(\frac{\sigma_{\text{EFT}}^{\text{NLO}}}{\sigma_{\text{EFT}}^{\text{LO}}} \right) \sigma_{\text{QCD}}^{\text{LO}} \]

NNLO study of \(1/m_t \) suppressed operators, matched to large s-hat limit, large indicates this persists

Harlander, Mantler, Marzani, Ozeren; Pak, Rogal, Steinhauser 2009

NLO in the EFT:

analytic continuation to time-like form factor

eikonal emission of soft gluons

Identical factors in full theory with \(\sigma_0 \rightarrow \sigma_{\text{LO}}, \) full theory

\[\Delta \sigma = \sigma_0 \frac{\alpha_s}{\pi} \left\{ \left(\frac{11}{2} + \pi^2 \right) \delta(1 - z) + 12 \left[\frac{\ln(1 - z)}{1 - z} \right] \right\} - 12z(-z + z^2 + 2)\ln(1 - z) \]

\[-6 \frac{(z^2 + 1 - z)^2}{1 - z} \ln(z) - \frac{11}{2} (1 - z)^3 \}

Identical factors in full theory with \(\sigma_0 \rightarrow \sigma_{\text{LO}}, \) full theory

\[\sigma_{\text{approx}}^{\text{NLO}} = \left(\frac{\sigma_{\text{EFT}}^{\text{NLO}}}{\sigma_{\text{EFT}}^{\text{LO}}} \right) \sigma_{\text{QCD}}^{\text{LO}} \]

NNLO study of \(1/m_t \) suppressed operators, matched to large s-hat limit, large indicates this persists

Harlander, Mantler, Marzani, Ozeren; Pak, Rogal, Steinhauser 2009

NLO in the EFT:

analytic continuation to time-like form factor

eikonal emission of soft gluons

Identical factors in full theory with \(\sigma_0 \rightarrow \sigma_{\text{LO}}, \) full theory

\[\Delta \sigma = \sigma_0 \frac{\alpha_s}{\pi} \left\{ \left(\frac{11}{2} + \pi^2 \right) \delta(1 - z) + 12 \left[\frac{\ln(1 - z)}{1 - z} \right] \right\} - 12z(-z + z^2 + 2)\ln(1 - z) \]

\[-6 \frac{(z^2 + 1 - z)^2}{1 - z} \ln(z) - \frac{11}{2} (1 - z)^3 \}

Identical factors in full theory with \(\sigma_0 \rightarrow \sigma_{\text{LO}}, \) full theory

\[\sigma_{\text{approx}}^{\text{NLO}} = \left(\frac{\sigma_{\text{EFT}}^{\text{NLO}}}{\sigma_{\text{EFT}}^{\text{LO}}} \right) \sigma_{\text{QCD}}^{\text{LO}} \]

NNLO study of \(1/m_t \) suppressed operators, matched to large s-hat limit, large indicates this persists

Harlander, Mantler, Marzani, Ozeren; Pak, Rogal, Steinhauser 2009
Summary of gluon fusion

- Serves as a very accurate framework for all LHC phenomenology
- Current uncertainty estimates: roughly 8% from uncalculated higher orders, 7% from PDFs, a few percent from other effects (use of EFT, bottom-quark effects, EW effects)

Useful references: S. Dawson, NPB359 (1991) 283-300 and QCD and Collider Physics by Ellis, Stirling, Webber (detailed NLO calculation); 1101.0593 (detailed discussion of uncertainties)

Available codes: http://theory.fi.infn.it/grazzini/hcalculators.html
http://particle.uni-wuppertal.de/harlander/software/ggh@nnlo/